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... without further ado, I present my exam notes! 
 

Year 12 ATAR Mathematics Specialist Units 3 & 4 Exam Notes 

Exam Notes License Information 
These exam notes are an attribution, non-commercial, no-derivative work protected by 
Creative Commons 3.0 Australia. This means that you are free to share, copy and redistribute 
these exam notes in any medium or format under the following three conditions: 

Attribution 
You must give appropriate credit and provide a link to our website 
(www.sharpened.com.au) whenever you refer to these exam notes. 

Non-Commercial 
You are strictly not allowed to use these exam notes for any commercial purposes 
under any circumstances. 

No Derivatives 
If you change, edit or alter the original state of these exam notes, you are not 
allowed to distribute or shared the modified material under any circumstances. 

About the Creator – Anthony Bochrinis 
I graduated from high school in 2012, completed a Bachelor of 
Actuarial Science in 2015 and am currently completing my 
Graduate Diploma in Secondary Education with the goal of 
becoming a full-time high school teacher next year! 
 
My original exam notes (created in 2013) were inspired by Severus 
Snape’s copy of Advanced Potion Making in Harry Potter and the 
Half-Blood Prince; a textbook filled with annotations containing all 
of the pro tips and secrets to help gain a clearer understanding.  
 
I hope that my exam notes help to sharpen your knowledge and I 
wish you all the best in your exams! 

Using these Exam Notes 
These exam notes are designed to be a complement to your studies throughout the year. As 
such, I recommend using these exam notes during class, during tests, whilst studying at home 
or in the library and even in the calculator-assumed section of your mock and WACE exams. 
 
These exam notes contain theory, diagrams, formulae and worked examples based off the 
official SCSA syllabus to give you a full revision of the entire course in just 4 pages. For more 
detailed information about our most frequently asked questions about the use of these exam 
notes, please visit my website or email me. 
 
Website: www.sharpened.com.au 

E-Mail Address: support@sharpened.com.au 



   

 

 

  

ATAR Math Specialist Units 3 & 4                    Page 1 / 4                    Created by Anthony Bochrinis - Sharpened® 

 

 

 

IMAGINARY NUMBERS 
 

 

𝑖−4 = 1 𝑖0 = 1 𝑖4 = 1 

𝑖−3 = √−1 𝑖1 = √−1 𝑖5 = √−1 

𝑖−2 = −1 𝑖2 = −1 𝑖6 = −1 

𝑖−1 = −𝑖 𝑖3 = −𝑖 𝑖7 = −𝑖 
 
 

COMPLEX NUMBER NOTATION 
 

 
 
 
 
 
 
 
 
 
 

• 𝑰𝒎: imaginary axis (vertical axis) 

• 𝑹𝒆: real axis (horizontal axis) 

• 𝒛: complex number (𝑧 = 𝑥 + 𝑦𝑖) 

• 𝒛: conjugate of a complex number 

(𝑧̅ = 𝑥 − 𝑦𝑖) and is reflected in the real axis 

• 𝒙: real components (horizontal axis) 

• 𝒚: imaginary component (vertical axis) 

• 𝒓: modulus (length) of a complex number 
and can also be represented by |𝑧| 

• 𝜽: argument (angle that the complex 
number makes with the real axis) of a 
complex number and can also be 
represented by arg(𝑧) 

 
 

RECTANGULAR (CARTESIAN) FORM 
 
 

• 𝑧 = 𝑥 + 𝑦𝑖 where: 
o 𝒙: is the real component 

o 𝒚: is the imaginary component 
 

Convert Polar to Rectangular (Cartesian): 

• 𝑥 = 𝑟× cos(𝜃) and 𝑦 = 𝑟× sin(𝜃) 
 

Distance between two points 𝐴 and 𝐵: 

• 𝐴𝐵⃗⃗⃗⃗  ⃗ = √(𝑥𝐵
2 − 𝑥𝐴

2)2 + (𝑦𝐵
2 − 𝑦𝐴

2)2 
 
 
 

POLAR FORM 
 
 

• 𝑧 = 𝑟×𝑐𝑖𝑠(𝜃) where: 

o 𝒓: is the modulus 
o 𝜽: is the argument 
o 𝒄𝒊𝒔(𝜽): is short for cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃) 

 

Convert Rectangular (Cartesian) to Polar: 

• 𝑟 = |𝑧| = √𝑥2 + 𝑦2 and 𝜃 = tan−1 (
𝑦

𝑥
) 

 

Distance between two points 𝐴 and 𝐵: 

• 𝐴𝐵⃗⃗⃗⃗  ⃗ = √𝑟𝐴
2 + 𝑟𝐵

2 − 2𝑟𝐴𝑟𝐵cos⁡(𝜃𝐴 − 𝜃𝐵) 
 
 

COMPLEX NUMBER RULES 
 
 

Rules for Complex Conjugates 
 

𝑧1 ± 𝑧2
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ ± 𝑧2̅ 𝑧1×𝑧2̅̅ ̅̅ ̅̅ ̅̅ = 𝑧1̅×𝑧2̅ 

𝑧̅ = 𝑥 − 𝑦𝑖 = 𝑟𝑐𝑖𝑠(−𝜃) 

𝑧 + 𝑧̅ = 2𝑅𝑒(𝑧) = 2𝑥 = 2𝑟𝑐𝑜𝑠𝜃 

𝑧 − 𝑧̅ = 2𝑖𝐼𝑚(𝑧) = 2𝑦𝑖 = 2𝑟(𝑖⁡𝑠𝑖𝑛𝜃) 

𝑧×𝑧̅ = 𝑥2 + 𝑦2 = |𝑧|2 = 𝑟2 

𝑧

𝑧̅
= (

𝑥2 − 𝑦2

𝑥2 + 𝑦2
) + 𝑖 (

2𝑥𝑦

𝑥2 + 𝑦2
) = 𝑐𝑖𝑠(2𝜃) 

 

Rules for Arguments 
 

arg(𝑧×𝑤) = arg(𝑧) + arg⁡(𝑤) 

arg(𝑧 ÷ 𝑤) = arg(𝑧) − arg⁡(𝑤) 
 

Rules for Moduli 
 

|𝑧×𝑤| = |𝑧|×|𝑤| |
𝑧

𝑤
| =

|𝑧|

|𝑤|
 

 

More Complex Number Rules 
 

𝑧−1 =
1

𝑧
=

1

𝑥 + 𝑦𝑖
×

𝑥 − 𝑦𝑖

𝑥 − 𝑦𝑖
=

𝑥 − 𝑦𝑖

𝑥2 + 𝑦2
=

𝑧̅

|𝑧|
 

𝑧

𝑤
=

𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
=

𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
×

𝑐 − 𝑑𝑖

𝑐 − 𝑑𝑖
=

𝑧×𝑤

|𝑤|2
 

 
 

DE MOIVRE’S THEOREM 
 
 

• (𝑟𝑐𝑖𝑠⁡𝜃)𝑛 = 𝑟𝑛cos⁡(𝑛𝜃) + 𝑟𝑛𝑖𝑠𝑖𝑛(𝑛𝜃) 
• 𝑧𝑛 = |𝑧|𝑛𝑐𝑖𝑠(𝑛𝜃) 

• 𝑧
1

𝑛 = |𝑧|1/𝑛 [𝑐𝑖𝑠 (
𝜃+2𝜋𝑘

𝑛
)] for an integer 𝑘 

• Find the complex 𝑛𝑡ℎ roots of a non-zero 

complex number 𝑧: 
o Step 1: Write 𝑧 in polar form: 𝑧 = 𝑟(𝑐𝑖𝑠𝜃) 
o Step 2: 𝑧 will have 𝑛 different 𝑛𝑡ℎ roots 

(i.e. 3 cube roots, 4 fourth roots etc.) 
o Step 3: All these roots will have the 

same modulus |𝑧|1/𝑛 = 𝑟1/𝑛  
o Step 4: Roots have different arguments: 

𝜃

𝑛
,
𝜃+(1×2𝜋)

𝑛
,
𝜃+(2×2𝜋)

𝑛
, … ,

𝜃+((𝑛−1)×2𝜋)

𝑛
  

o Step 5: The complex 𝑛𝑡ℎ roots of 𝑧 are 
given in polar form by: 

▪ 𝑧1 = 𝑟1/𝑛𝑐𝑖𝑠 (
𝜃

𝑛
) 

▪ 𝑧2 = 𝑟1/𝑛𝑐𝑖𝑠 (
𝜃+(1×2𝜋)

𝑛
) 

▪ 𝑧3 = 𝑟1/𝑛𝑐𝑖𝑠 (
𝜃+(2×2𝜋)

𝑛
) and so on… 

▪ 𝑧𝑛 = 𝑟1/𝑛𝑐𝑖𝑠 (
𝜃+((𝑛−1)×2𝜋)

𝑛
) 

 
 

 
 
 
 

COMPLEX NUMBERS  

𝑰𝒎(𝒛) 

𝑹𝒆(𝒛) 
0 

𝑦 

−𝑦 

𝑥 

𝜃 

𝜃 

𝑟 

𝑟 

𝑧 = 𝑥 + 𝑦𝑖 

𝑧̅ = 𝑥 − 𝑦𝑖 

FUNCTIONS  

 

DEFINITION OF A FUNCTION 
 
 

A function is one that: 

• Passes the vertical line test 

 

 

• Is one-to-one or many-to-one 

 

 
 

 
 

DEFINITION OF A NON - FUNCTION 
 
 

A non-function (a.k.a. relation) is one that: 

• Fails the vertical line test 

 

 

• Is one-to-many 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

COMPOSITE FUNCTIONS 
 
 

Let 𝒇(𝒙) = 𝒍𝒏(𝒙𝟐 + 𝟏) and  𝒈(𝒙) = 𝟐√𝒙, find: 
 

𝟏  𝒇 ∘ 𝒈(𝒙) 

= 𝑓(2√𝑥) = 𝑙𝑛 [(2√𝑥)
2
+ 1] = ln⁡(4𝑥 + 1) 

 

𝟐  Find 𝒈(𝒙) given 𝒇 ∘ 𝒈(𝒙) and 𝒇(𝒙) 

𝑓 ∘ 𝑔(𝑥) = 𝑓(𝑔(𝑥))  

ln(4𝑥 + 1) = 𝑙𝑛(𝑔(𝑥)2 + 1)  

Hence 𝑔(𝑥)2 = 4𝑥 and 𝑔(𝑥) = √4𝑥 = 2√𝑥 
 

𝟑  Find 𝒇(𝒙) given 𝒇 ∘ 𝒈(𝒙) and 𝒈(𝒙) 

Let 𝑔(𝑥) = 2√𝑥 = 𝑢 

Solve 2√𝑥 = 𝑢 for 𝑥: 𝑥 = (
𝑢

2
)

2

 

𝑓(𝑔(𝑥)) = ln(4𝑥 + 1) = ln⁡[4 (
𝑢

2
)

2

+ 1] 

= ln⁡(𝑢2 + 1) ∴ 𝑓(𝑢) = ln⁡(𝑢2 + 1) 

Change 𝑢⁡to 𝑥: 𝑓(𝑥) = ln⁡(𝑥2 + 1) 
 

𝟒  Let 𝒇(𝒙) = 𝟏 + √𝒙 − 𝟐 and 𝒈(𝒙) =
𝟏

𝒙−𝟓
, 

find the domain and range of 𝒈 ∘ 𝒇(𝒙) 

𝑔 ∘ 𝑓(𝑥) =
1

1 + √𝑥 − 2 − 5
=

1

√𝑥 − 2 − 4
 

Step 1: Find domain of inside function 𝑓(𝑥) 
Domain of 𝑓(𝑥) = {𝑥 ∈ ℝ: 𝑥 ≥ 2} 

Step 2: Find domain of 𝑔 ∘ 𝑓(𝑥) 

Solve √𝑥 − 2 − 4 ≠ 0,⁡𝑥 − 2 ≠ 16, 𝑥 ≠ 18  

Natural domain of 𝑔 ∘ 𝑓(𝑥) = {𝑥 ∈ ℝ: 𝑥 ≠ 18} 

Step 3: The domain of 𝑔 ∘ 𝑓(𝑥) is the 

intersection of the two previous domains 

Domain of 𝑔 ∘ 𝑓(𝑥) = {𝑥 ∈ ℝ: 𝑥 ≥ 2, 𝑥 ≠ 18} 

Step 4: To find the range of 𝑔 ∘ 𝑓(𝑥), analyse 

the critical points from the domain: 

• For critical points that are ≤,≥ substitute 

them directly into 𝑔 ∘ 𝑓(𝑥) 
• For critical points that are ≠,<,> substitute 

a number that's ever so slightly lower and 
higher into 𝑔 ∘ 𝑓(𝑥) 

• Also substitute ∞,−∞ into 𝑔 ∘ 𝑓(𝑥) 
𝑔 ∘ 𝑓(2) = −0.25  

𝑔 ∘ 𝑓(18.001) → ∞ and 𝑔 ∘ 𝑓(17.999) → −∞ 

𝑔 ∘ 𝑓(∞) → 0 and 𝑔 ∘ 𝑓(−∞) = 𝑁/𝐴 

Range of 𝑔 ∘ 𝑓(𝑥) = {𝑔 ∘ 𝑓(𝑥) ∈ ℝ: 

𝑔 ∘ 𝑓(𝑥) ≤ −0.25, 𝑔 ∘ 𝑓(𝑥) > 0} 
 

 

INVERSE FUNCTIONS 
 
 

Inverse functions are diagonally symmetrical 

about a 45º line drawn through a set of axes. 

 

 

 

Inverse Function Rules 
 

𝑓 ∘ 𝑓−1(𝑥) = 𝑓(𝑓−1(𝑥)) = 𝑥 

𝑓−1 ∘ 𝑓(𝑥) = 𝑓−1(𝑓(𝑥)) = 𝑥 
 
 

𝟏  Determine 𝒇−𝟏(𝒙) of 𝒇(𝒙) = 𝒍𝒏(𝒙 + 𝟑) + 𝟏 

𝑓−1(𝑥) is the inverse of 𝑓(𝑥): 

𝑓(𝑥) = 𝑦 = ln(𝑥 + 3) + 1 → 𝑦 − 1 = ln(𝑥 + 3) 

𝑒𝑦−1 = 𝑥 + 3 → 𝑒𝑦−1 − 3 = 𝑥 → 𝑦 = 𝑒𝑥−1 − 3 
 

𝟐  Prove that 𝒇(𝒙) = 𝟐𝒙 − 𝟑 and 

 𝒈(𝒙) = 𝟎. 𝟓𝒙 + 𝟏. 𝟓 are inverse functions. 

𝑓(𝑔(𝑥)) = 2(0.5𝑥 + 1.5) − 3 = 𝑥 + 3 − 3 = 𝑥 

 

 

 

 

Vertical line cuts the curve 
once, so it passes the vertical 
line test. Therefore, this is a 
function. 

 

COMPLEX NUMBER EXAMPLES 
 
 

𝟏  Express 
𝟒+𝟑𝒊

𝟐−𝒊
 in cartesian form. 

4 + 3𝑖

2 − 𝑖
=

4 + 3𝑖

2 − 𝑖
×

2 + 𝑖

2 + 𝑖
=

(4 + 3𝑖)(2 + 𝑖)

(2 − 𝑖)(2 + 𝑖)
 

=
8 + 4𝑖 + 6𝑖 + 3𝑖2

4 − 𝑖2
=

5 + 10𝑖

5
= 1 + 2𝑖 

 

𝟐  Express (−√𝟑 + 𝒊)(𝟒 + 𝟒𝒊) in polar form. 

Converting (−√3 + 𝑖) to polar form: 

𝑟 = |𝑧| = √(−√3)
2
+ 12 = √4 = 2 

θ = arg(𝑧) = 𝑡𝑎𝑛−1 (
1

−√3
) = −

𝜋

6
 but as z is in the 

second quadrant, arg(𝑧) = −
𝜋

6
+ 𝜋 =

5𝜋

6
 

Converting (4 + 4𝑖) to polar form: 

𝑟 = |𝑧| = √42 + 42 = √32 = √16√2 = 4√2 

θ = arg(𝑧) = 𝑡𝑎𝑛−1 (
4

4
) =

𝜋

4
  

Multiplying two complex numbers together: 

[2𝑐𝑖𝑠 (
5𝜋

6
)]× [4√2𝑐𝑖𝑠 (

𝜋

4
)] = 8√2𝑐𝑖𝑠 (

5𝜋

6
+

𝜋

4
)  

= 8√2𝑐𝑖𝑠 (
26𝜋

24
) = 8√2𝑐𝑖𝑠 (

13𝜋

12
)  

 

𝟑  Determine all roots, real and complex, of 

the equation 𝒇(𝒛) = 𝒛𝟑 − 𝟒𝒛𝟐 + 𝒛 + 𝟐𝟔 
Substitute different values of 𝑧 until 𝑓(𝑧) = 0: 

𝑓(0) = 26 ≠ 0, 𝑓(1) = 24 ≠ 0, 𝑓(−1) = 20 ≠ 0, 
𝑓(2) = 20 ≠ 0 → these are not factors 

𝑓(−2) = 0 hence (𝑧 + 2) is a factor  

∴ 𝑧3 − 4𝑧2 + 𝑧 + 26 = (𝑧 + 2)(𝑧2 + 𝑏𝑧 + 𝑐) 
Using polynomial long division (on page 2): 

𝑝𝑟𝑜𝑝𝐹𝑟𝑎𝑐 (
𝑧3 − 4𝑧2 + 𝑧 + 26

𝑧 + 2
) = 𝑧2 − 6𝑧 + 13 

Find roots of 𝑧2 − 6𝑧 + 13 by quadratic formula: 

𝑧 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

6 ± √36 − 4(1)(13)

2(1)
 

=
6 ± √−16

2
=

6 ± √16√−1

2
=

6 ± 4𝑖

2
= 3 ± 2𝑖 

Hence roots are 𝑧 = −2, 3 + 2𝑖, 3 − 2𝑖 
 

𝟒  Find all the complex numbers that satisfy 

the equation |𝒛|𝟐 − 𝒊𝒛 = 𝟑𝟔 + 𝟒𝒊 
Let 𝑧 = 𝑥 + 𝑦𝑖 and hence: 
|(𝑥 + 𝑦𝑖)|2 − 𝑖(𝑥 + 𝑦𝑖) = 36 + 4𝑖 

(√𝑥2 + 𝑦2)
2
− 𝑥𝑖 − 𝑦𝑖2 = 36 + 4𝑖 

𝑥2 + 𝑦2 − 𝑥𝑖 + 𝑦 − 36 − 4𝑖 = 0 
Equating real and imaginary parts: 

𝑥2 + 𝑦2 + 𝑦 − 36 = 0 and −𝑥 − 4 = 0 
Hence, 𝑥 = −4 and (−4)2 + 𝑦2 + 𝑦 − 36 = 0 

16 + 𝑦2 + 𝑦 − 36 = 0 

𝑦2 + 𝑦 − 20 = 0 and (𝑦 + 5)(𝑦 − 4) = 0 
Giving 𝑦 = −5, 4 hence 𝑧 = −4 − 5𝑖, −4 + 4𝑖 
 

𝟓  Let 𝒂 and 𝒃 be real numbers with 𝒂 ≠ 𝒃. If 

𝒛 = 𝒙 + 𝒚𝒊 such that |𝒛 − 𝒂|𝟐 − |𝒛 − 𝒃|𝟐 = 𝟏, 

prove that 𝒙 =
𝒂+𝒃

𝟐
+

𝟏

𝟐(𝒃−𝒂)
 

|(𝑥 + 𝑦𝑖) − 𝑎|2 − |(𝑥 + 𝑦𝑖) − 𝑏|2 = 1 
|(𝑥 − 𝑎) + 𝑦𝑖|2 − |(𝑥 − 𝑏) + 𝑦𝑖|2 = 1 
(𝑥 − 𝑎)2 + 𝑦2 − [(𝑥 − 𝑏)2 + 𝑦2] = 1 
(𝑥 − 𝑎)2 − (𝑥 − 𝑏)2 = 1 
𝑥2 − 2𝑎𝑥 + 𝑎2 − 𝑥2 + 2𝑏𝑥 − 𝑏2 = 1 
(2𝑏 − 2𝑎)𝑥 + 𝑎2 − 𝑏2 = 1 

𝑥 =
1−𝑎2+𝑏2

2𝑏−2𝑎
=

𝑎+𝑏

2
+

1

2(𝑏−𝑎)
  

 
 

DE MOIVRE’S THEOREM EXAMPLES 
 

 

𝟏  Find 𝒛𝟏𝟎 given that 𝒛 = 𝟏 − 𝒊 

𝑟 = |𝑧| = √12 + (−1)2 = √2  and arg(𝑧) = −
𝜋

4
 

Hence, 𝑧 in polar form is 𝑧 = √2𝑐𝑖𝑠 (−
𝜋

4
) 

Applying De Moivre’s Theorem gives: 

𝑧10 = (√2)
10

𝑐𝑖𝑠 (10×−
𝜋

4
) = 25𝑐𝑖𝑠 (−

10𝜋

4
) 

= 32𝑐𝑖𝑠 (−
5𝜋

2
) = 32𝑐𝑖𝑠 (−

5𝜋

2
+ 2𝜋) 

= 32𝑐𝑖𝑠 (−
𝜋

2
) = 32 [𝑐𝑜𝑠 (−

𝜋

2
) + 𝑖⁡𝑠𝑖𝑛 (−

𝜋

2
)] 

= 32[0 + 𝑖(−1)] = −32𝑖 
 

𝟐  Use De Moivre’s Theorem to find the 
smallest positive angle 𝜽 for which: 

(𝒄𝒐𝒔𝜽 + 𝒊⁡𝒔𝒊𝒏𝜽)𝟏𝟓 = −𝒊 
cos(15𝜃) + 𝑖⁡𝑠𝑖𝑛(15𝜃) = 0 − 𝑖 
Equating real and imaginary parts: 

0 = cos(15𝜃) and −1 = 𝑠𝑖𝑛(15𝜃) 

Considering both conditions, 15𝜃 =
3𝜋

2
 

Hence, 𝜃 =
3𝜋

30
=

𝜋

10
 is the smallest positive angle 

 

𝟑  By expanding (𝒄𝒐𝒔𝜽 + 𝒊⁡𝒔𝒊𝒏𝜽)𝟑 show that 

𝒄𝒐𝒔𝟑𝜽 =
𝟏

𝟒
𝒄𝒐𝒔𝟑𝜽 +

𝟑

𝟒
𝒄𝒐𝒔𝜽 

 

Step 1: expand the brackets of (𝑐𝑜𝑠𝜃 + 𝑖⁡𝑠𝑖𝑛𝜃)3: 
(𝑐𝑜𝑠𝜃 + 𝑖⁡𝑠𝑖𝑛𝜃)3 = cos3 𝜃 + 3 cos2 𝜃(𝑖⁡𝑠𝑖𝑛𝜃) + 

3 cos(𝑖⁡𝑠𝑖𝑛𝜃)2 + (𝑖⁡𝑠𝑖𝑛𝜃)3 

= cos3 𝜃 + 3𝑖𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃 − 3𝑐𝑜𝑠𝜃 sin2 𝜃 − 𝑖 sin3 𝜃 
Step 2: simplify (𝑐𝑜𝑠𝜃 + 𝑖⁡𝑠𝑖𝑛𝜃)3 using De 
Movire’s Theorem: 
(𝑐𝑜𝑠𝜃 + 𝑖⁡𝑠𝑖𝑛𝜃)3 = 𝑐𝑜𝑠3𝜃 + 𝑖⁡𝑠𝑖𝑛3𝜃 
Step 3: equating the real parts: 
cos3 𝜃 − 3𝑐𝑜𝑠𝜃 sin2 𝜃 = 𝑐𝑜𝑠3𝜃 
cos3 𝜃 = 𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃 (1 − cos2 𝜃) 
cos3 𝜃 = 𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃−3cos3 𝜃 
4 cos3 𝜃 = 𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃 

cos3 𝜃 =
1

4
𝑐𝑜𝑠3𝜃 +

3

4
𝑐𝑜𝑠𝜃 

 
 
 

𝟏  {𝒛:⁡|𝒛 + 𝟐 + 𝟐𝒊| ≤ |𝒛|} 
|(𝑥 + 2) + 𝑖(𝑦 + 2)|

≤ |𝑥2 + 𝑦2| 
(𝑥 + 2)2 + (𝑦 + 2)2

≤ 𝑥2 + 𝑦2 
Simplifying this equation 
and making 𝑦⁡the subject 

gives 𝑦 ≤ −𝑥 − 2. 
 

−2 

−2 

𝟐  {𝒛:⁡|𝒛 + 𝟐 + 𝟐𝒊| = |𝒛 −
𝟑 − 𝒊|} 
|𝑧 − (−2 − 2𝑖)| 
= |𝑧 − (3 + 𝑖)| 
Place a point at (3,1)⁡and 

(−2,−2), find the halfway 

point between them and 
draw a perpendicular. 
 
 
𝟑  {𝒛: ⁡𝒛𝟐 = −𝟐𝒛 − 𝟒} 
𝑧2 + 2𝑧 + 4 = 0 
Use quadratic equation 

to solve for 𝑧: 

𝑧 = −1 ± √3𝑖 

∴ ⁡𝑧 = −1 + √3𝑖 and  

𝑧 = −1 − √3𝑖 
 

𝟒  {𝒛: −
𝝅

𝟑
< 𝑎𝑟𝑔(𝒊𝒛) <

𝝅

𝟑
} 

𝑖𝑧 = 𝑖×(𝑥 + 𝑦𝑖) 
𝑥𝑖 + 𝑦𝑖2 = 𝑥𝑖 − 𝑦 

∴ iz rotates a complex 
number by 90º anti-
clockwise. Needs to be 
reversed in the answer. 

𝟓  {𝒛: 𝟐 < |𝒛 − 𝟏| ≤ 𝟒} 
Draw a point at (1,0) and 
draw a doughnut with 
outer radius of 4 and 
inner radius of 2. Always 
take note of the 
inequality symbols used 

in the equation. 

𝟔  {𝒛: 𝒛 − 𝒛̅ < 𝟐𝒊} 
(𝑥 + 𝑦𝑖) − (𝑥 − 𝑦𝑖) < 2𝑖 
𝑥 + 𝑦𝑖 − 𝑥 + 𝑦𝑖 < 2𝑖 
2𝑦𝑖 < 2𝑖 
𝑦𝑖 < 𝑖 
𝑦 < 1 
Take note of the 
inequality symbol used. 
 
 
 
 

−1 

√3 

−√3 

−2 

−2 3 
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𝜋

3
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−1 

0 

1 

 

0 

1 

 

 𝑦 = 3𝑥 

 

𝑦 = 𝑥2 

 

Vertical line cuts the curve 
twice, so it fails the vertical 
line test. Therefore, this is not 
a function. 

o
n

e
- 

to
-m

a
n

y
 

−2 

2 

 

 

 

 

4 

 

𝑦2 = 𝑥 

 

𝑦2 = 𝑥 

𝑦 = ±√𝑥 

𝑦 = √𝑥 and 𝑦 = −√𝑥 

 

 

 

𝒙 

 

 

𝒙 

 

 

𝒚 

 

 

𝒚 

 

 

𝒙 

 

 

𝒚 

 

 

Step 1: solve the 

function for 𝑥. 

Step 2: swap all 𝑥’s 

with 𝑦’s, this new 

equation, is the 

inverse. 

 

 

DE MOIVRE’S THEOREM EXAMPLES 
 
 

𝟒  Find and graph all the complex fourth 
roots of −𝟏𝟔 on an argand plane. 

𝑟 = |−16| = √(−16)2 = 16  and arg(−16) = 𝜋 

Hence, −16 in polar form is 𝑧 = 16𝑐𝑖𝑠(𝜋) 
We need 4 roots hence 𝑛 = 4 and the roots are: 

𝑧1 = 16
1
4𝑐𝑖𝑠 (

𝜋

4
) = 2𝑐𝑖𝑠 (

𝜋

4
) 

𝑧2 = 16
1
4𝑐𝑖𝑠 (

𝜋 + (1×2𝜋)

4
) = 2𝑐𝑖𝑠 (

3𝜋

4
) 

𝑧3 = 16
1
4𝑐𝑖𝑠 (

𝜋 + (2×2𝜋)

4
) = 2𝑐𝑖𝑠 (

5𝜋

4
) 

𝑧4 = 16
1
4𝑐𝑖𝑠 (

𝜋 + (3×2𝜋)

4
) = 2𝑐𝑖𝑠 (

7𝜋

4
) 

 
 
 
 

 
 
 
 
 

 
 

𝟓  One of the solutions of 𝒛𝟑 = 𝒂, for some 

constant 𝒂, is 𝒛 = 𝟒√𝟑 − 𝟒𝒊. Determine all 
other solutions in Cartesian form. 

𝑟1/3 = |4√3 − 4𝑖| = √(4√3)
2
+ (−4)2 = 8 and 

arg(4√3 − 4𝑖) = tan−1 (
4

−4√3
) = −

𝜋

6
 

Hence, 4√3 − 4𝑖 in polar form is 𝑧 = 8𝑐𝑖𝑠 (−
𝜋

6
) 

We need 3 roots hence 𝑛 = 3 and the roots are: 

𝑧1 = 8𝑐𝑖𝑠 (−
𝜋

6
) = 4√3 − 4𝑖 

𝑧2 = 8𝑐𝑖𝑠 (−
𝜋

6
+

2𝜋

3
) = 8𝑐𝑖𝑠 (

3𝜋

6
) = 8𝑖 

𝑧3 = 8𝑐𝑖𝑠 (−
𝜋

6
+

4𝜋

3
) = 8𝑐𝑖𝑠 (

7𝜋

6
) = −4√3 − 4𝑖 

 
 

TRANSFORMATIONS 
 
 

• Multiplying 𝑧 by 𝑖 rotates a complex number 
by 90º anti-clockwise. 

 

• Multiplying 𝑧 by 𝑖𝑛 rotates a complex number 

by (
𝑛𝜋

2
) anti-clockwise. 

 

• Multiplying 𝑧 by 𝑛 increases the modulus of a 
complex number by scale factor 𝑛. 

 

• Multiplying 𝑅𝑒(𝑧) by −1 reflects a complex 

number in the y-axis. 
 

• Multiplying 𝐼𝑚(𝑧) by −1⁡reflects a complex 
number in the x-axis. 

 

 

ARGAND (COMPLEX) PLANE 
 
 

Draw the following on the complex plane: 
 

−2 

−2 

2 

2 

𝑧1 𝑧2 

𝑧3 𝑧4 

Note that there are 

𝑛 = 4 roots and that 

all roots are equally 

spaced out by an 

angle of  
2𝜋

𝑛
=

2𝜋

4
=

𝜋

2
 



 

𝑥×𝑦 

𝑥 

𝑦 

𝜃 

|𝑥×𝑦| 
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FUNCTIONS  3-D VECTORS  

 

SYSTEMS OF LINEAR EQUATIONS 
 

 

• Echelon Form: ClassPad → Main → Action 

→ Matrix → Calculation → ref 

𝑟𝑒𝑓 ([
𝑎 𝑏
𝑒 𝑓
𝑖 𝑗

𝑐 𝑑
𝑔 ℎ
𝑘 𝑙

]) 
 

• ClassPad output: 

𝑟𝑒𝑓 ([
2 6
6 12
4 10

4 14
3 18
6 22

]) = [
1 3
0 1
0 0

2 7
1.5 4
1 2

] 
 
 

• Reduced Echelon Form: ClassPad → Main 

→ Action → Matrix → Calculation → rref 

𝑟𝑟𝑒𝑓 ([
𝑎 𝑏
𝑒 𝑓
𝑖 𝑗

𝑐 𝑑
𝑔 ℎ
𝑘 𝑙

]) 
 

• ClassPad output: 

𝑟𝑟𝑒𝑓 ([
2 6
6 12
4 10

4 14
3 18
6 22

]) = [
1 0
0 1
0 0

0 0
0 1
1 2

] 
 
 

SOLUTIONS OF LINEAR EQUATIONS 
 
 

There are three types of solutions for a system 
of linear equations. To solve for these different 
solutions, the last row of matrix in echelon form 
must have the following forms: 
 

• Infinite Solutions: more than 1 solution 

o Graphic representation: 
 
 
 
 
 

o Last row of matrix in echelon has the form:  

 
• Unique Solution: only 1 solution 

o Graphic representation: 
 
 
 
 
 

o Last row of matrix in echelon has the form:  

 
• No Solutions: 0 solutions 

o Graphic representation: 
 
 
 
 
 

o Last row of matrix in echelon has the form:  

 
 

 

LINEAR EQUATIONS EXAMPLES 
 

 

𝟏  Reduce this matrix to echelon form 

[
𝟏 𝟏 𝟏
𝟏 𝟐 𝟕 + 𝒂
𝟐 𝟑 𝒂𝟐 + 𝟐

|
𝟑
𝟓

𝒂 + 𝟏𝟎
] 

[
1 1 1
0 1 6 + 𝑎
0 1 𝑎2

|
3
2

𝑎 + 4
]

𝑟1
𝑟2 − 𝑟1
𝑟3 − 2𝑟1

 

[
1 1 1
0 1 6 + 𝑎
0 0 𝑎2 − 𝑎 − 6

|
3
2

𝑎 + 2
]

𝑟1
𝑟2

𝑟3 − 𝑟2
 

 

Using the matrix above, find 𝒂 that gives: 

𝟐  No solutions 

Last row in form of: [𝟎 𝟎 𝟎 | 𝑩]⁡𝑩 ≠ 𝟎 

∴ 𝑎2 − 𝑎 − 6 = 0 and 𝑎 + 2 ≠ 0 

Solving to get 𝑎 = 3,−2 and 𝑎 ≠ −2 

∴ 𝑎 = 3 gives no solutions 
 

𝟑  Infinite solutions 

Last row in form of: [𝟎 𝟎 𝟎 | 𝟎] 

∴ 𝑎2 − 𝑎 − 6 = 0 and 𝑎 + 2 = 0 

Solving to get 𝑎 = 3,−2 and 𝑎 = −2 

∴ 𝑎 = −2 gives no solutions 
 

𝟒  A unique solution 

Last row in form of: [𝟎 𝟎 𝑨 | 𝑩]⁡𝑨, 𝑩 ≠ 𝟎 

∴ 𝑎2 − 𝑎 − 6 ≠ 0 and 𝑎 + 2 ≠ 0 

Solving to get 𝑎 ≠ 3,−2 and 𝑎 ≠ −2 

∴ 𝑎 ≠ −2 gives unique solution (𝑎 ∈ ℝ: 𝑎 ≠ −2) 
 

 

DRAWING LINES 
 
 

 
 

 

 
 

 
 
 
 
 

 
 
 
 

Parametric form of vector equation of a line 

• 𝑥 = 𝑎 + 𝜆𝑑, 𝑦 = 𝑏 + 𝜆𝑒, 𝑧 = 𝑐 + 𝜆𝑓 where: 
o ⁡(𝑎, 𝑏, 𝑐) is 𝑟0⁡and (𝑑, 𝑒, 𝑓) is 𝑟 − 𝑟0⁡  
o 𝜆 determines the magnitude and direction 
 

Cartesian equation of a line 

• 
𝑥−𝑎

𝑑
=

𝑦−𝑏

𝑒
=

𝑧−𝑐

𝑓
 where: 

o (𝑎, 𝑏, 𝑐) is 𝑟0⁡and (𝑑, 𝑒, 𝑓) is 𝑟 − 𝑟0⁡  
 

This returns the matrix 
in echelon form. 
 

This returns the matrix 
in reduced echelon 
form (i.e. will give the 

answers for 𝑥, 𝑦 and 𝑧). 
 

 

RECIPROCAL FUNCTIONS 
 

 

Sketch 𝟏/𝒇(𝒙) given 𝒇(𝒙) 
• Any x - intercepts on 𝑓(𝑥) are vertical 

asymptotes on 1/𝑓(𝑥) 

• Any intersections that 𝑓(𝑥) has with 𝑦 = 1 

or 𝑦 = −1 are points on 1/𝑓(𝑥) 

• As 𝑓(𝑥) approaches ∞ or −∞ it moves 

toward the x - axis on 1/𝑓(𝑥) 

𝟏  Sketch the function 𝒚 =
𝟏

𝒙𝟐−𝟐
  

Let 𝑓(𝑥) = 𝑥2 − 2 and hence, 
1

𝑓(𝑥)
=

1

𝑥2−2
 

 

 

 

𝟐  Sketch the function 𝒚 =
𝟏

𝒍𝒏(𝒙+𝟒)
  

Let 𝑓(𝑥) = ln⁡(𝑥 + 4) and hence, 
1

𝑓(𝑥)
=

1

ln⁡(𝑥+4)
 

 

 

 

 

 

ABSOLUTE VALUE FUNCTIONS 
 
 

• Sketch |𝒇(𝒙)|: Any points below the x - axis 
are reflected in the x - axis and any points 
above the x - axis aren’t changed. 

• Sketch 𝒇(|𝒙|): Reflects functions that 
cannot have negative x values (e.g. square 
root and logarithm functions) in the y – axis. 

 

𝟏  If 𝒇(𝒙) = 𝒙𝟐 − 𝟑, sketch |𝒇(𝒙)| 

 

 

 

 

 

 
 

𝟐  If 𝒇(𝒙) = √𝒙 − 𝟐, sketch 𝒇(|𝒙|) 
 
 
 
 
 
 
 
 

 

𝟑  Sketch 𝒚 = |𝒙 + 𝟏| − |𝒙 − 𝟐| 

Solve each individual absolute value 

brackets for when it equals each individual 

absolute value brackets for when it equals 0: 

|𝑥 + 1| = 0, 𝑥 = −1 and |𝑥 − 2| = 0, 𝑥 = 2 

Hence, 𝑥 = 1,2 are the critical values. 
 

Create a 𝑥/𝑦 table with each critical value 

above. Insert columns between each critical 

value and choose a random number between 

them. Solve the entire table for 𝑦:  
 

x -2 -1 0 2 3 

y -3 -3 -1 3 3 
 

 

 

 

 

 

 
 
 

POLYNOMIAL FRACTION FUNCTIONS 
 

 

𝟏  Sketch the function 𝒚 =
−𝟑+𝟒𝒙−𝒙𝟐

𝒙𝟐−𝒙
  

=
−(𝑥2 − 4𝑥 + 3)

𝑥(𝑥 − 1)
=

−(𝑥 − 3)(𝑥 − 1)

𝑥(𝑥 − 1)
 

=
−(𝑥 − 3)

𝑥
=

3 − 𝑥

𝑥
=

3

𝑥
− 1 

• Vertical asymptote @ 𝑥 = 0 

• Horizontal asymptote @ 𝑦 = −1 

 
 

 

 

 

 
 

𝟐  Sketch the function 𝒚 =
𝒙𝟐−𝟓𝒙+𝟔

𝒙+𝟏
  

Using polynomial long division (on the right): 

𝑝𝑟𝑜𝑝𝐹𝑟𝑎𝑐 (
𝑥2 − 5𝑥 + 6

𝑥 + 1
) = 𝑥 − 6 +

12

𝑥 + 1
 

• Oblique asymptote @ 𝑦 = 𝑥 − 6 

• Vertical asymptote @ 𝑥 = −1 

The three 
planes produce 
an intersection 
that is a line. 
 

The three planes 
have a single 
point of 
intersection. 
 

None of the 
three planes 
have a common 
intersection. 
 

𝒛 

𝒚 

𝑛 

𝒙 

 

DRAWING PLANES 
 

 

 
 
 
 
 
 
 
 

 
Vector Equation of a Plane 

• (𝑟 − 𝑟0). 𝑛 = 0 where: 
o 𝑃 and 𝑃0 are points on the plane 

o 𝑛 is normal (perpendicular) to the plane 
o This equation can be simplified to: 

𝑟. 𝑛 − 𝑟0. 𝑛 = 0 → 𝑟. 𝑛 = 𝑟0. 𝑛 → 𝑟. 𝑛 = 𝑐 
 

Cartesian Equation of a Plane 

• 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 where: 

o 𝐴, 𝐵, 𝐶 and 𝐷 are real-valued parameters 
o Vector (𝐴, 𝐵, 𝐶) is normal (perpendicular) 

to the plane 
 

 

VECTOR RULES 
 
 

• Given 𝑥̃ = (𝑎, 𝑏, 𝑐) and 𝑦̃ = (𝑑, 𝑒, 𝑓): 
 

General Vector Rules 
 

𝑋𝑌⃗⃗⃗⃗  ⃗ = 𝑦̃ − 𝑥̃ |𝑥| = √𝑎2 + 𝑏2 + 𝑐2 

|𝑋𝑌⃗⃗⃗⃗  ⃗| = √(𝑑 − 𝑎)2 + (𝑒 − 𝑏)2 + (𝑓 − 𝑐)2 
 

Unit Vector (𝒙̂) 
• Returns vector with the same direction but 

with a magnitude of 1. 
 
 

𝑥̂ =
𝑥

|𝑥|
 |𝑥̂| = 1 

 

Dot Product⁡⁡(𝒙⁡. 𝒚) 
• Dot product gives scalar result (a number). 
 

𝑥⁡. 𝑦 = (𝑎×𝑑) + (𝑏×𝑒) + (𝑐×𝑓) 

𝑥⁡. 𝑦 = |𝑥||𝑦|𝑐𝑜𝑠𝜃 𝑥. 𝑥 = |𝑥|2 

𝑥 and 𝑦 are perpendicular if 𝑥⁡. 𝑦 = 0 

𝑑𝑜𝑡𝑃([𝑎, 𝑏, 𝑐], [𝑑, 𝑒, 𝑓]) 
ClassPad → Main → Action 

→ Vector → dotP 
 

Cross Product (𝒙×𝒚) 
• Cross product gives vector result (a vector). 

• Returns vector normal to a plane. 
 
 
 
 
 

 
 

𝑥×𝑦 = (𝑏𝑓 − 𝑐𝑒, 𝑐𝑑 − 𝑎𝑓, 𝑎𝑒 − 𝑏𝑑) 

𝑥×𝑦 = 𝑛̂|𝑥||𝑦|𝑠𝑖𝑛𝜃 
Where 𝑛̂ is the unit vector 

perpendicular to vectors 𝑥 and 𝑦 

𝑐𝑟𝑜𝑠𝑠𝑃([𝑎, 𝑏, 𝑐], [𝑑, 𝑒, 𝑓]) 
ClassPad → Main → Action 

→ Vector → crossP 
 
 

VECTOR EXAMPLES 
 
 

𝟏  Vector equation of a line passing through 
two given points 

Points 𝑨 and 𝑩 have co-ordinates (𝟐, 𝟏,−𝟑) 

and (𝟒, 𝟓, −𝟏) respectively. 

𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝑏̃ − 𝑎̃ = 2𝑖 + 4𝑗 + 2𝑘 and hence, 

𝑟 = (2𝑖 + 𝑗 − 3𝑘) + 𝜆(2𝑖 + 4𝑗 + 2𝑘) 
 

𝟐  Test if a point is perpendicular to a line 

Point to test is 𝑨(𝟏, 𝟐, 𝟏) and the equation of 

the line is 𝒓 = (𝒊 + 𝟐𝒋 + 𝟑𝒌) + 𝝀(𝟒𝒊 + 𝟐𝒋 − 𝟖𝒌) 
(𝑖 + 2𝑗 + 𝑘)⁡. (4𝑖 + 2𝑗 − 8𝑘) = 4 + 4 − 8 = 0 
Hence, the point is perpendicular to the line. 
 

𝟑  Intersection of two moving vectors  

Find point of intersection between the lines  

𝑨 = (−𝟕𝒊 + 𝟗𝒋 − 𝟓𝒌) + 𝝀(𝟓𝒊 − 𝟒𝒋 + 𝟐𝒌) and 

𝑩 = (−𝟔𝒊 − 𝟓𝒋 + 𝟐𝒌) + 𝝁(𝟗𝒊 + 𝟔𝒋 − 𝟑𝒌) 

Solve the 𝑖, 𝑗 and 𝑘 parts for 𝜆 and 𝜇: 

−7 + 5𝜆 = −6 + 9𝜇, 9 − 4𝜆 = −5 + 6𝜇 and 

−5 + 2𝜆 = 2 − 3𝜇 and hence, 𝜆 = 2, 𝜇 = 1 
therefore point of intersection is (3,1,−1) 
 

𝟒  Collision of two moving vectors  
Find collision between moving vectors  

𝑨 = (𝟐𝒊 + 𝟏𝒋 − 𝟑𝒌) + 𝝀(𝟕𝒊 + 𝟏𝟎𝒋 − 𝟑𝒌) and 

𝑩 = (𝟓𝒊 + 𝟐𝟖𝒋 − 𝟔𝒌) + 𝝁(𝟔𝒊 + 𝒋 − 𝟐𝒌) where 

velocity is measured in 𝒌𝒎/𝒉. 

Equating 𝑖 – coefficients: 2 + 7𝜆 = 5 + 6𝜇 

Equating 𝑗 – coefficients: 1 + 10𝜆 = 28 + 1𝜇 

Equating 𝑘 – coefficients: −3 − 3𝜆 = −6 − 2𝜇 

Solving the first two equations (𝑖 and 

𝑗⁡coefficients) for 𝜆 and 𝜇: 𝜆 = 3 and 𝜇 = 3 

Substitute into third equation (𝑘 coefficient): 

−3 − 3(3) = −6 − 2(3)⁡→ 6 = 6 which is 

consistent so a collision occurs as times 𝜆 and 

𝜇 are the same (@ 𝑡 = 3). Finding collision 

point, substitute 𝑡 = 3 back into 𝐴 or 𝐵: 

𝐴 = (2𝑖 + 1𝑗 − 3𝑘) + 3(7𝑖 + 10𝑗 − 3𝑘) 

= (23𝑖 + 31𝑗 − 12𝑘) 

𝑂 

𝑃 
𝑃0 

𝑟 𝑟0 

|𝑥×𝑦|⁡is area 

of the 

parallelogram 

with sides 

𝑥 and 𝑦. 
 

𝒛 

𝒚 
𝒙 

𝑂 

𝑃 
𝑃0 

𝑟 
𝑟0 

3𝑥 + 1 

3𝑥3 + 1𝑥2 

 

) 
1𝑥2 − 2𝑥 + 4 

3𝑥3 − 5𝑥2 + 10𝑥 − 3 

−6𝑥2 + 10𝑥 

− 

− 

−7 

𝟏  Determine 

𝟑𝒙𝟑 − 𝟓𝒙𝟐 + 𝟏𝟎𝒙 − 𝟑

𝟑𝒙 + 𝟏
 

 

−6𝑥2 − 2𝑥 

+12𝑥 − 3 

+12𝑥 + 4 − 

= 𝑥2 − 2𝑥 + 4 −
7

3𝑥 + 1
 

𝒚 

𝒙 

 

ABSOLUTE VALUE 
 
 

Absolute Value Piecewise Function 
 

|𝑥| = {
𝑥 𝑥 ≥ 0
−𝑥 𝑥 < 0

 

 

𝟏  If 𝒇(𝒙) = 𝒙 + 𝟐 and 𝒈(𝒙) = (𝒙 + 𝟏)𝟐 − 𝟓, 

solve |𝒇(𝒙)| = |𝒈(𝒙)| 
|𝑔(𝑥)| = |𝑥2 + 2𝑥 − 4| = |𝑥 + 2| = |𝑓(𝑥)| 
 

Solving for when absolute value is positive: 

𝑥2 + 2𝑥 − 4 = 𝑥 + 2 → 𝑥2 + 𝑥 − 6 = 0 

(𝑥 + 3)(𝑥 − 2) = 0 → 𝑥 = −3,2 
 

Solving for when absolute value is negative:  

𝑥2 + 2𝑥 − 4 = −𝑥 − 2 → 𝑥2 + 3𝑥 − 2 = 0 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−3 ± √9 + 8

2
 

=
−3 ± √17

2
= 0.5616,−3.5616 

𝑥 = −3, 2, 0.5616,−3.5616 
 

𝟐  If |𝟐𝒙 + 𝟒| = 𝒂|𝒙 + 𝒃| + 𝒄, determine the 

values of the real constants 𝒂, 𝒃 and 𝒄 

that over the domain {𝒙 ∈ ℝ:−𝟐 ≤ 𝒙 ≤ 𝟒} 

In order for two absolute functions to be 

equal over a given domain, the two functions 

cannot have the same concavity: 

 

 

 

 

 

 
 

From the graph, we can find the signs for the 

values for 𝑎, 𝑏 and 𝑐: 𝑎 is negative (concave), 

𝑏 is negative (positive x - intercept) and 𝑐 is 

positive (positive y – intercept). Hence, when 

𝑥 = 4, 𝑦 = 12⁡→ 𝑐 = 12. Also, 𝑏 = −4 as there 

is a cusp at 𝑥 = 4 and substituting (−2,0) into 

𝑦 = 𝑎|𝑥 − 4| + 12 gives 𝑎 = −2. 
 

 

PARTIAL FRACTIONS 
 

 

• Partial Fractions: ClassPad → Main → 

Action → Transformation → Expand 
 

𝑒𝑥𝑝𝑎𝑛𝑑(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝑥) 
 

• ClassPad output: 

𝑒𝑥𝑝𝑎𝑛𝑑 (
3𝑥 + 11

𝑥2 − 𝑥 − 6
, 𝑥) =

4

𝑥 − 3
−

1

𝑥 + 2
 

 

𝟏  Simplify 
𝟑𝒙+𝟏𝟏

𝒙𝟐−𝒙−𝟔
 

3𝑥 + 11

𝑥2 − 𝑥 − 6
=

3𝑥 + 11

(𝑥 − 3)(𝑥 + 2)
=

𝐴

𝑥 − 3
+

𝐵

𝑥 + 2
 

3𝑥 + 11

𝑥2 − 𝑥 − 6
=

𝐴(𝑥 + 2) + 𝐵(𝑥 − 3)

(𝑥 − 3)(𝑥 + 2)
 

3𝑥 + 11 = 𝐴(𝑥 + 2) + 𝐵(𝑥 − 3) 

3𝑥 + 11 = 𝐴𝑥 + 2𝐴 + 𝐵𝑥 − 3𝐵 

Hence, 3 = 𝐴 + 𝐵 and 11 = 2𝐴 − 3𝐵 

Simultaneously solving on the ClassPad: 

𝐴 = 4, 𝐵 = −1 
 

𝟐  Simplify 
𝒙𝟐−𝟐𝟗𝒙+𝟓

(𝒙−𝟒)𝟐(𝒙𝟐+𝟑)
 

𝑥2 − 29𝑥 + 5

(𝑥 − 4)2(𝑥2 + 3)
=

𝐴

𝑥 − 4
+

𝐵

(𝑥 − 4)2
+

𝐶𝑥 + 𝐷

𝑥2 + 3
 

 

𝑥2 − 29𝑥 + 5 = 𝐴(𝑥 − 4)(𝑥2 + 3) + 

𝐵(𝑥2 + 3) + (𝐶𝑥 + 𝐷)(𝑥 − 4)2 
 

= (𝐴 + 𝐶)𝑥3 + (−4𝐴 + 𝐵 − 8𝐶 + 𝐷)𝑥2 

+(3𝐴 + 16𝐶 − 8𝐷)𝑥 − 12𝐴 + 3𝐵 + 16𝐷 
 

Equating co-efficients and solving: 

𝑥3:
𝑥2:

𝐴 + 𝐶 = 0
−4𝐴 + 𝐵 − 8𝐶 + 𝐷 = 1

𝑥1:
𝑥0:

3𝐴 + 16𝐶 − 8𝐷 = −29
−12𝐴 + 3𝐵 + 16𝐷 = 5

} ⇒

𝐴 = 1
𝐵 = −5
𝐶 = −1
𝐷 = 2

 

 

 

POLYNOMIAL LONG DIVISION 
 
 

• Polynomial Long Division: ClassPad → 

Main → Action → Transformation → 

Fraction → propFrac 
 

𝑝𝑟𝑜𝑝𝐹𝑟𝑎𝑐(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛⁡1/𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛⁡2) 
 

• ClassPad output: 
 

𝑝𝑟𝑜𝑝𝐹𝑟𝑎𝑐 (
𝑥2 − 9𝑥 − 10

𝑥 + 1
) = 𝑥 − 10 

 

 

𝒚 

𝒙 

𝒚 

𝒙 

𝒚 

𝒙 

𝒚 

𝒙 

𝒚 

𝒙 

𝒚 

𝒙 

2 −1 

𝒚 

𝒙 

−2 4 |2𝑥 + 4| 

𝑎|𝑥 + 𝑏| + 𝑐 

Overlap 

 

Note: ensure 

that row 

operations 

are written 

aside the 

matrix. 

Step 1: divide 

the highest 

order 

polynomials 

and multiply 

this answer by 

the divisor. 
 

Step 2: 

subtract the 

two equations  
 

Step 3: repeat 

steps 1 and 2 

until a single 

number 

remains. 

Note: 𝑥 ≠ 1 as 

denominator of  

function cannot be 0. 
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C ALCULUS  

 

INTEGRATION RULES 
 

 

Common Integrals 
 

∫𝒙𝒏𝒅𝒙 =
𝒙𝒏+𝟏

𝒏 + 𝟏
+ 𝒄 

∫𝒇′(𝒙)×[𝒇(𝒙)]𝒏 ⁡𝒅𝒙 =
[𝒇(𝒙)]𝒏+𝟏

𝒏 + 𝟏
+ 𝒄⁡ 

∫𝒆𝒇(𝒙) ⁡𝒅𝒙 =
𝒆𝒇(𝒙)

𝒇′(𝒙)
+ 𝒄 

∫
𝒇′(𝒙)

𝒇(𝒙)
⁡𝒅𝒙 = 𝐥𝐧|𝒇(𝒙)| + 𝒄 

∫𝒔𝒊𝒏⁡(𝒙) ⁡𝒅𝒙 = −𝒄𝒐𝒔(𝒙) + 𝒄 

∫𝒄𝒐𝒔⁡(𝒙) ⁡𝒅𝒙 = 𝒔𝒊𝒏(𝒙) + 𝒄 

∫𝒔𝒆𝒄𝟐⁡(𝒙) ⁡𝒅𝒙 = 𝒕𝒂𝒏(𝒙) + 𝒄 

 
 

IMPLICIT DIFFERENTIATION 
 
 

𝟏  The point (𝒂, 𝒃) lies on the curves 𝒙𝟐 −

𝒚𝟐 = 𝟓 and 𝒙𝒚 = 𝟔. Prove that the tangents 

to these curves at (𝒂, 𝒃) are perpendicular. 

Differentiating 𝑥2 − 𝑦2 with respect to 𝑥: 

𝑥2 − 𝑦2 = 5 → 2𝑥 − 2𝑦
𝑑𝑦

𝑑𝑥
= 0 →

𝑑𝑦

𝑑𝑥
=

𝑥

𝑦
 

At point (𝑎, 𝑏) the slope is 𝑚1 =
𝑥

𝑦
 

Differentiating 𝑥𝑦 = 6 with respect to 𝑥: 

𝑥𝑦 = 6 → 𝑦 + 𝑥
𝑑𝑦

𝑑𝑥
= 0 →

𝑑𝑦

𝑑𝑥
= −

𝑦

𝑥
 

At point (𝑎, 𝑏) the slope is 𝑚2 = −
𝑦

𝑥
 

Lines are perpendicular if 𝑚1×𝑚2 = −1 

𝑚1×𝑚2 =
𝑥

𝑦
×−

𝑦

𝑥
= −1 

 

𝟐  Find the gradient at the point (𝟐,−𝟏) on 

the curve 𝒙 + 𝒙𝟐𝒚𝟑 = −𝟐 

Differentiating with respect to 𝑥: 

1 + 2𝑥𝑦3 + 𝑥23𝑦2
𝑑𝑦

𝑑𝑥
= 0 →

𝑑𝑦

𝑑𝑥
=

−1 − 2𝑥𝑦3

𝑥23𝑦2
 

𝑑𝑦

𝑑𝑥
|
𝑥=2,𝑦=−1

=
−1 − 2×2×(−1)3

22×3×(−1)2
=

1

4
⁡ 

 

𝟑  Determine the derivative of √𝒙 + √𝒚 = 𝟏 

Differentiating with respect to 𝑥: 

1

2√𝑥
+

1

2√𝑦

𝑑𝑦

𝑑𝑥
= 0 →

𝑑𝑦

𝑑𝑥
= −√

𝑦

𝑥
 

 

𝟒  Find the co-ordinates of the points 

where the tangent to the curve 

𝒙𝟐 + 𝟐𝒙𝒚 + 𝟑𝒚𝟐 = 𝟏𝟖⁡is horizontal. 

Differentiating with respect to 𝑥: 

2𝑥 + 2𝑦 + 2𝑥
𝑑𝑦

𝑑𝑥
+ 6𝑦

𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
(2𝑥 + 6𝑦) = −2𝑥 − 2𝑦 = −(

𝑥 + 𝑦

𝑥 + 3𝑦
) 

Solve for when 
𝑑𝑦

𝑑𝑥
= 0 hence 𝑥 = −𝑦 

Substitute into original: 𝑦2 − 2𝑦2 + 3𝑦2 = 18 

𝑦2 = 9 and hence, 𝑦 = ±3, 𝑥 = ±3 

 

80

(20 + 𝑥)(20 − 𝑥)
=

𝐴(20 − 𝑥) + 𝐵(20 + 𝑥)

40 − 𝑥2
 

80 = 20𝐴 − 𝐴𝑥 + 20𝐵 + 𝐵𝑥 

Hence, 80 = 20𝐴 + 20𝐵 and 0 = 𝐵 − 𝐴 

𝐴 = 2, 𝐵 = −2 hence, integral is ∫
2

20+𝑥
−

2

20−𝑥
𝑑𝑥 

= 2𝑙𝑛(|20 + 𝑥|) − 2𝑙𝑛(|20 − 𝑥|) + 𝑐 
 
 

DIFFERENTIAL EQUATIONS 
 
 

𝟏  A solution of a differential equation is 

𝒚 = 𝑨𝒆−𝟐𝒕 + 𝑩𝒆−𝒕. When 𝒕 = 𝟎, it given that 

𝒚 = 𝟎 and 
𝒅𝒚

𝒅𝒕
= 𝟏. Find the values of 𝑨 and 𝑩. 

𝑦 = 𝐴𝑒−2𝑡 + 𝐵𝑒−𝑡 →
𝑑𝑦

𝑑𝑥
= −2𝐴𝑒−2𝑡 − 𝐵𝑒−𝑡 

Using that 𝑦 = 0 when 𝑡 = 0: 0 = 𝐴 + 𝐵 

Using that 
𝑑𝑦

𝑑𝑥
= 1 when 𝑡 = 0: −1 = −2𝐴 − 𝐵 

Solving for 𝐴 and 𝐵: 𝐴 = −1 and 𝐵 = 1 

Hence, 𝑦 = −𝑒−2𝑡 + 𝑒−𝑡 
 

𝟐  Determine the equation of the graph 

from the following conditions: 

• Gradient of the tangent at all points is 

given by −
𝒙

𝟑𝒚
 

• The graph passes through (𝟑, 𝟏) 
𝑑𝑦

𝑑𝑥
= −

𝑥

3𝑦
→ ∫3𝑦𝑑𝑦 = ∫−𝑥𝑑𝑥 

3𝑦2

2
= −

𝑥2

2
+ 𝐶 → 3𝑦2 = −𝑥2 + 𝐶 

Applying initial condition (3,1): 
3(1)2 = −(3)2 + 𝐶 → 3 = −9 + 𝐶 → 𝐶 = 12 

Hence, 2𝑦2 = 3𝑥2 + 12 
 

𝟑  Determine the general solution for 

𝒚′ = 𝟔𝒚𝟐𝒙 given that 𝒙 = 𝟏, 𝒚 =
𝟏

𝟐𝟓
 

𝑑𝑦

𝑑𝑥
= 6𝑦2𝑥 → ∫

𝑑𝑦

𝑦2
= ∫6𝑥𝑑𝑥 → −

1

𝑦
= 3𝑥2 + 𝑐 

Applying initial condition (1/25,1): 

−25 = 3 + 𝑐 → 𝑐 = −28⁡hence, −
1

𝑦
= 3𝑥2 − 28 

 
 

 

TRIGONOMETRY IDENTITIES 
 

 

Reciprocal Identities 
 

sin(𝑥)

=
1

𝑐𝑜𝑠𝑒𝑐(𝑥)
 

cos(𝑥)

=
1

𝑠𝑒𝑐(𝑥)
 

tan(𝑥)

=
1

𝑐𝑜𝑡(𝑥)
 

cosec(𝑥)

=
1

𝑠𝑖𝑛(𝑥)
 

sec(𝑥)

=
1

𝑐𝑜𝑠(𝑥)
 

cot(𝑥)

=
1

𝑡𝑎𝑛(𝑥)
 

 

Pythagorean Identities 
 

sin2 𝜃 + cos2 𝜃 = 1 1 + tan2 𝜃 = sec2 𝜃 
 

Quotient Identities 
 

tan(𝑥) =
sin(𝑥)

cos(𝑥)
 cot(𝑥) =

cos(𝑥)

sin(𝑥)
 

 

Co-Function Identities 
 

sin (
𝜋

2
− 𝑥)

= cos⁡(𝑥) 

cos (
𝜋

2
− 𝑥)

= sin⁡(𝑥) 
 

Parity Identities (Even and Odd) 
 

sin(−𝑥) = −𝑠𝑖𝑛(𝑥) cos(−𝑥) = cos⁡(𝑥) 

tan(−𝑥) = −tan⁡(𝑥) sec(−𝑥) = sec⁡(𝑥) 
 

Sum and Difference 
 

sin(𝑥 ± 𝑦) = sin(𝑥) cos(𝑦) ± cos(𝑥) sin⁡(𝑦) 

cos(𝑥 ± 𝑦) = cos(𝑥) cos(𝑦) ∓ sin(𝑥) sin⁡(𝑦) 

tan(𝑥 ± 𝑦) =
tan(𝑥) ± tan⁡(𝑦)

1 ∓ tan(𝑥) tan⁡(𝑦)
 

 

Double Angle 
 

cos(2𝑥) = cos2(𝑥) − sin2(𝑥) 
= 2 cos2(𝑥) − 1 = 1 − 2 sin2(𝑥) 

sin(2𝑥) = 2 sin(𝑥) cos⁡(𝑥) 

tan(2𝑥) =
2tan⁡(𝑥)

1 − tan2(𝑥)
 

 

Power Reducing 
 

sin2(𝑥) = 
1 − cos⁡(2𝑥)

2
 

cos2(𝑥) = 
1 + cos⁡(2𝑥)

2
 

 

Limits of Sine and Cosine 
 

lim
𝑥→0

sin⁡(𝑥)

𝑥
= 1 𝑙𝑖𝑚

𝑥→0

1 − 𝑐𝑜𝑠⁡(𝑥)

𝑥
= 0 

 

 

DIFFERENTIATION RULES 
 
 

Product, Quotient and Chain Rules 
 

𝑦 = 𝑢𝑣⁡ → ⁡
𝑑𝑦

𝑑𝑥
= 𝑢′𝑣 + 𝑢𝑣′ 

𝑦 =
𝑢

𝑣
⁡→ ⁡

𝑑𝑦

𝑑𝑥
=

𝑢′𝑣 − 𝑢𝑣′

𝑣2
 

𝑦 = [𝑓(𝑥)]𝑛 ⁡→ ⁡
𝑑𝑦

𝑑𝑥
= 𝑛[𝑓(𝑥)]𝑛−1×𝑓′(𝑥) 

 

Common Derivatives 
 

𝑦 = 𝑎𝑥𝑛 ⁡→ ⁡
𝑑𝑦

𝑑𝑥
= 𝑛×𝑎𝑥𝑛−1 

𝑦 = 𝑒𝑓(𝑥) ⁡→ ⁡
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥)×𝑒𝑓(𝑥) 

𝑦 =
1

𝑥
= 𝑥−1 ⁡→ ⁡

𝑑𝑦

𝑑𝑥
=

−1

𝑥2
= −𝑥−2 

𝑦 = ±𝑠𝑖𝑛(𝑥) → ⁡
𝑑𝑦

𝑑𝑥
= ±𝑐𝑜𝑠(𝑥) 

𝑦 = ±𝑐𝑜𝑠(𝑥) →⁡
𝑑𝑦

𝑑𝑥
= ∓𝑠𝑖𝑛(𝑥) 

𝑦 = ±𝑡𝑎𝑛(𝑥) → ⁡
𝑑𝑦

𝑑𝑥
= ±sec2(𝑥) =

±⁡1

cos2(𝑥)
 

𝑦 = 𝑙𝑛[𝑓(𝑥)] ⁡→ ⁡
𝑑𝑦

𝑑𝑥
=

𝑓′(𝑥)

𝑓(𝑥)
 

𝑦 = 𝑎𝑥 ⁡→ ⁡
𝑑𝑦

𝑑𝑥
= ln⁡(𝑎)×𝑎𝑥 

 

 

INTEGRATION RULES 
 

 

Integral Rules 
 

∫ 𝑓(𝑥) =
𝑏

𝑎

− ∫ 𝑓(𝑥)
𝑎

𝑏

 

∫𝑎𝑥𝑛 ⁡𝑑𝑥 = ⁡𝑎∫𝑥𝑛 ⁡𝑑𝑥 
 

Fundamental Theorem of Calculus 
 

𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

) = 𝑓(𝑥) 

∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎)
𝑏

𝑎

 

 

Integration by Parts 
 

∫𝑢𝑣′⁡𝑑𝑥 = 𝑢𝑣 −⁡∫𝑢′𝑣⁡𝑑𝑥 

 

Area Between Curves 
 

∫
𝑢𝑝𝑝𝑒𝑟
𝑐𝑢𝑟𝑣𝑒

𝑑𝑥 −
𝑏

𝑎

∫ 𝑙𝑜𝑤𝑒𝑟
𝑐𝑢𝑟𝑣𝑒

𝑏

𝑎

𝑑𝑥 

 

 

 

LOGISTIC EQUATION 
 
 

Logistic Equation Differential Equation 

• Used in biology, mathematics, economics, 

chemistry, probability and statistics 
 

Form 
𝒅𝑷

𝒅𝒕
= 𝒂𝑷 − 𝒃𝑷𝟐 

Solution 𝑷 =
𝒂

𝒃 + 𝒌𝒆−𝒂𝒕
 

 

𝟏  Show that if 𝑷 =
𝒂

𝒃+𝒌𝒆−𝒂𝒕
, then the 

derivative is in the form  
𝒅𝑷

𝒅𝒕
= 𝒂𝑷 − 𝒃𝑷𝟐 

From these two equations, deduce that: 

𝑘𝑒−𝑎𝑡 =
𝑎

𝑃
− 𝑏 

 

𝑑𝑃

𝑑𝑡
= 𝑎 (

𝑎

𝑏 + 𝑘𝑒−𝑎𝑡
) − 𝑏 (

𝑎

𝑏 + 𝑘𝑒−𝑎𝑡
)

2

 

=
𝑎2

𝑏 + 𝑘𝑒−𝑎𝑡
−

𝑎2𝑏

(𝑏 + 𝑘𝑒−𝑎𝑡)2
 

=
𝑎2

𝑏 + 𝑘𝑒−𝑎𝑡
[
1

1
−

𝑏

𝑏 + 𝑘𝑒−𝑎𝑡
] 

=
𝑎2

𝑏 + 𝑘𝑒−𝑎𝑡
[
𝑏 + 𝑘𝑒−𝑎𝑡 − 𝑏

𝑏 + 𝑘𝑒−𝑎𝑡
] 

 

=
𝑎2𝑘𝑒−𝑎𝑡

(𝑏 + 𝑘𝑒−𝑎𝑡)2
=

𝑎2 (
𝑎
𝑃 − 𝑏)

(
𝑎
𝑃)

2 = 𝑎𝑃 − 𝑏𝑃2 

 

𝟐  If 
𝒅𝑷

𝒅𝒕
= 𝟎. 𝟐𝑷 − 𝟎. 𝟎𝟎𝟐𝑷𝟐, determine 𝑷 as 

a function of 𝒕 from question 1 above 

given that when 𝒕 = 𝟎,𝑷 = 𝟓. 
 

0.2

0.002 + 𝑘𝑒0
= 5 → 𝑘 = 0.038 

∴ 𝑃 =
0.2

0.002 + 0.038𝑒−0.2𝑡
 

 
 

VECTOR AND MOTION CALCULUS 
 
 

Displacement, Velocity and Acceleration 
 

Displacement 𝒓(𝒕) 

Velocity 𝒗(𝒕) = 𝒓′(𝒕) 

Acceleration 𝒂(𝒕) = 𝒗′(𝒕) = 𝒓′′(𝒕) 
 

𝟏  A particle is moving in 𝒎/𝒔 along a 

straight line and the acceleration of the 

particle is modelled by 𝒂(𝒕) = 𝟐 − 𝒆
−𝒙

𝟐 . 

When 𝒗 = 𝟒, 𝒙 = 𝟎. Find 𝒗𝟐 in terms of 𝒙. 
𝑑

𝑑𝑥
(
1

2
𝑣2) = 𝑎(𝑡) = 2 − 𝑒

−𝑥
2  

1

2
𝑣2 = ∫2 − 𝑒

−𝑥
2 𝑑𝑥 = 2𝑥 + 2𝑒

−𝑥
2 + 𝑐 

When 𝑣 = 4, 𝑥 = 0 hence, 
1

2
(16) = 0 + 2 + 𝑐, 𝑐 = 6 

∴
1

2
𝑣2 = 2𝑥 + 2𝑒

−𝑥
2 + 6𝑣2 = 4𝑥 + 4𝑒

−𝑥
2 + 12 

 

The position vector of a particle is initially 

at 𝒓 = −𝒋 cm and is moving horizontally 

with velocity in 𝒄𝒎/𝒔 according to the 

equation 𝒗 = (𝟑𝒄𝒐𝒔𝒕)𝒊 + (𝒔𝒊𝒏𝒕)𝒋 
 

𝟐  What is the initial acceleration? 

𝑎(𝑡) = 𝑣′(𝑡) = (−3𝑠𝑖𝑛𝑡)𝑖 + (𝑐𝑜𝑠𝑡)𝑗 
 

𝟑  Find the displacement function. 

𝑟(𝑡) = ∫𝑣(𝑡)𝑑𝑡 = (3𝑠𝑖𝑛𝑡)𝑖 − (𝑐𝑜𝑠𝑡)𝑗 + 𝑐 

As initially 𝑟 = −𝑗, 𝑐 = 0 hence: 

𝑟(𝑡) = (3𝑠𝑖𝑛𝑡)𝑖 − (𝑐𝑜𝑠𝑡)𝑗 
 

𝟑  Determine the cartesian equation of the 

path of the particle. 

𝑠𝑖𝑛𝑡 =
𝑥

3
 and 𝑐𝑜𝑠𝑡 = −𝑦 

sin2 𝑡 + cos2 𝑡 = (
𝑥

3
)
2

+ (−𝑦)2 = 1 

𝑥2

9
+ 𝑦2 = 1 

 
 

AREA BETWEEN CURVES 
 
 

𝟏  Determine the area between the two 

curves 𝒇(𝒙) = 𝒙𝟐 + 𝟐 and 𝒈(𝒙) = 𝒔𝒊𝒏(𝒙) 

with the condition⁡−𝟏 ≤ 𝒙 ≤ 𝟐 
 
 
 
 

 

 
 
 
 
 
 

Upper curve is 𝑓(𝑥) and the lower curve is 
𝑔(𝑥) with the bounds 𝑥 = −1 and 𝑥 = 2. 
 

Hence, 𝐴 = ∫ 𝑓(𝑥) − 𝑔(𝑥)𝑑𝑥
2

−1
 

= ∫ (𝑥2 + 2) − (sin⁡(𝑥))𝑑𝑥
2

−1

 

= [
1

3
𝑥3 + 2𝑥 + cos⁡(𝑥)]

−1

2

 

= [(
1

3
(2)3 + 2(2) + cos(2)) 

−(
1

3
(−1)3 + 2(−1) + cos(−1))] = 8.04 

 

3-D VECTORS  

 

VECTOR EXAMPLES 
 
 

𝟓  Intersection of two moving vectors  

Find intersection between moving vectors  

𝑨 = (−𝟕𝒊 + 𝟗𝒋 − 𝟓𝒌) + 𝝀(𝟓𝒊 − 𝟒𝒋 + 𝟐𝒌) and 

𝑩 = (−𝟔𝒊 − 𝟓𝒋 + 𝟐𝒌) + 𝝁(𝟗𝒊 + 𝟔𝒋 − 𝟑𝒌)  

Equating 𝑖 – coefficients: −7 + 5𝜆 = −6 + 9𝜇 

Equating 𝑗 – coefficients: 9 − 4𝜆 = −5 + 6𝜇 

Equating 𝑘 – coefficients: −5 + 2𝜆 = 2 − 3𝜇 

Solving the first two equations (𝑖 and 

𝑗⁡coefficients) for 𝜆 and 𝜇: 𝜆 = 2 and 𝜇 = 1 

𝜆 and 𝜇 are different hence intersection at 

𝐴 = (−7𝑖 + 9𝑗 − 5𝑘) + 2(5𝑖 − 4𝑗 + 2𝑘)  
= (3𝑖 + 𝑗 − 𝑘) 
 

𝟔  Shortest distance between two moving 
vectors Find shortest distance between 
the two moving vectors where velocity is 
measured in 𝒌𝒎/𝒉. 

𝑨 = (𝟐𝒊 + 𝒋 − 𝟑𝒌) + 𝝀(𝟕𝒊 + 𝟏𝟎𝒋 − 𝟑𝒌) and 

𝑩 = (−𝟓𝒊 + 𝟐𝟎𝒋 + 𝒌) + 𝝁(−𝟑𝒊 − 𝒋 + 𝟕𝒌)  
 

𝑑 = 𝐵𝐴⃗⃗⃗⃗  ⃗ + ( 𝑉𝐵𝐴 )𝑡 and 𝑑 ⁡. 𝑉𝐵𝐴 ⁡= 0 where: 

• 𝒅⃗⃗ : shortest displacement between 𝐴 and 𝐵  

• 𝑩𝑨⃗⃗⃗⃗⃗⃗ = 𝒂̃ − 𝒃̃: vector between 𝐴 and 𝐵 

• 𝑽𝑩𝑨 = 𝑽𝑨 − 𝑽𝑩: relative velocity of 𝐵 to 𝐴 
 

𝐵𝐴⃗⃗⃗⃗  ⃗ = [
7

−19
−4

] and 𝑉𝐵𝐴 = [
7
10
−3

] − [
−3
−1
7

] = [
10
11

−10
] 

𝑑 = 𝐵𝐴⃗⃗⃗⃗  ⃗ + ( 𝑉𝐵𝐴 )𝑡 =[
7

−19
−4

] + 𝑡 [
10
11

−10
]  

Using ClassPad to find time, 𝑑 ⁡. 𝑉𝐵𝐴  

= 𝑑𝑜𝑡𝑃 ([
7

−19
−4

] + 𝑡 [
10
11

−10
] , [

10
11
−10

]) = 0.308⁡ℎ𝑟 

Using ClassPad to find distance, 

= |⁡⁡[
7

−19
−4

] + 0.308 [
10
11

−10
]⁡⁡| = 19.89𝑘𝑚 

 

𝟕  Vector equation of a plane  
A plane contains the point (𝟓,−𝟕, 𝟐) and 

has a normal parallel to (𝟑, 𝟎,−𝟏) 

[
𝑥 − 5
𝑦 + 7
𝑧 − 2

] . [
3
0

−1
] = 0 hence, [

𝑥
𝑦
𝑧
] . [

3
0
−1

] = 13 

 

𝟖  Locating where a line intersects with a 

plane A plane contains the point (𝟓, −𝟕, 𝟐) 

and has a normal parallel to (𝟑, 𝟎, −𝟏), 

where does it intersect with the line 

𝑨 = (−𝟏𝟎𝒊 + 𝟒𝒋 − 𝟗𝒌) + 𝝀(𝟐𝒊 + 𝒋 − 𝟔𝒌) 

[
−10 + 2𝜆

4 + 𝜆
−9 − 6𝜆

] . [
3
0

−1
] = 13 Solving on ClassPad 

𝜆 = 17/6 and substituting into 𝐴 = [
−26/6
41/6
−26

] 

 

𝟗  Equation of a plane using three non-

collinear points Find the equation of a 
plane that passes through the points 

𝑨(𝟏, 𝟏, 𝟏), 𝑩(−𝟏, 𝟏, 𝟎) and 𝑪(𝟐, 𝟎, 𝟑) 

𝐴𝐵⃗⃗⃗⃗  ⃗ = (−2,0,−1) and 𝐴𝐶⃗⃗⃗⃗  ⃗ = (1,−1,2) 

𝐴𝐵⃗⃗⃗⃗  ⃗×𝐴𝐶⃗⃗⃗⃗  ⃗ = (−1,3,2) and hence equation of the 

plane is −𝑥 + 3𝑦 + 2𝑧 + 𝐷 = 0. Sub any point 
to find 𝐷: −(2) + 3(0) + 2(3) + 𝐷 = 0 

𝐷 = −4 hence⁡−𝑥 + 3𝑦 + 2𝑧 − 4 = 0 
 

𝟏𝟎  Cartesian equation of a sphere 
Find the radius and co-ordinates of the 
centre of the sphere with the equation 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟐𝒙 + 𝟒𝒚 − 𝟔𝒛 − 𝟓𝟎 = 𝟎 

𝑥2 + 𝑦2 + 𝑧2 + 2𝑥 + 4𝑦 − 6𝑧 = 50 

𝐿𝐻𝑆 = (𝑥 + 1)2 + (𝑦 + 2)2+(𝑧 − 3)2 

𝑅𝐻𝑆 = 50 + 1 + 4 + 9 = 64 = 82 

Hence, centre at (−1,−2, 3) and radius of 8. 
 

𝟏𝟏  Cartesian equation of a hyperbola 
Find the cartesian equation of the 
hyperbola with the vector equation 

𝑨 = [𝟑𝒕𝒂𝒏(𝒕)]𝒊 + [𝟒𝒔𝒆𝒄(𝒕)]𝒋 
𝑥

3
= tan(𝑡) ⁡and⁡

𝑦

4
= sec⁡(𝑡) 

1 + tan2 𝜃 = sec2 𝜃 → 1 + (
𝑥

3
)
2

= (
𝑦

4
)

2

 

1 +
𝑥2

9
=

𝑦2

16
→

𝑦2

16
−

𝑥2

9
= 1 

 

𝟏𝟐  Vectors in practice 
Triangle 𝑨𝑩𝑪 is below with the midpoints 

of each side 𝑴, 𝑵 and 𝑷 shown. Let 𝑨𝑪⃗⃗⃗⃗  ⃗ =

𝒖 and 𝑪𝑩⃗⃗⃗⃗⃗⃗ = 𝒗. Express 𝑨𝑵⃗⃗⃗⃗⃗⃗ + 𝑪𝑴⃗⃗ ⃗⃗ ⃗⃗  + 𝑩𝑷⃗⃗⃗⃗⃗⃗  in 

terms of 𝒖 and 𝒗. 

 
 
 
 
 
 
 

 

 

𝐴𝑁⃗⃗⃗⃗⃗⃗ = 𝑢 +
1

2
𝑣  

𝐶𝑀⃗⃗⃗⃗⃗⃗ = −𝑢 +
1

2
(𝑢 + 𝑣) =

1

2
𝑣 −

1

2
𝑢  

𝐵𝑃⃗⃗⃗⃗  ⃗ = −
1

2
𝑢 − 𝑣  

𝐴𝑁⃗⃗⃗⃗⃗⃗ + 𝐶𝑀⃗⃗⃗⃗⃗⃗ + 𝐵𝑃⃗⃗⃗⃗  ⃗ = 𝑢 +
1

2
𝑣 +

1

2
𝑣 −

1

2
𝑢 + 

−
1

2
𝑢 − 𝑣 = 𝑢 − 𝑢 + 𝑣 − 𝑣 = 0 

𝑩 

𝑨 𝑪 

𝑁 

𝑀 

𝑃 

𝑢 𝑣 

𝒚 

𝒙 

−1 2 
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C ALCULUS  STATISTIC AL INFERENCE  

YOUR NOTES AND EX AM PLES  

 

SLOPE (GRADIENT FIELDS) 
 
 

𝟏  Determine a general differential 

equation for the following slope field and 

explain your reasoning.  

 

 

 

 

 

 

 

 

 

 

 
𝑑𝑦

𝑑𝑥
= 𝑎𝑥 + 𝑏 

 

• Quadratic equation formed by isoclines. 

• Convex nature, hence 𝑎 is positive. 

• x-intercept on the negative x-axis, hence 𝑏 

is positive. 
 

𝟐  Determine a general differential 

equation for the following slope field and 

explain your reasoning.  

 

 

 

 

 

 

 

 

 

 

 
𝑑𝑦

𝑑𝑥
= −𝑎𝑥2 − 𝑏 

 

• Isoclines are all have negative gradient, 

hence cubic function. 

• Point of inflection is on the y-axis. 

• Consistent negative isoclines indicate 

negative gradient. 
 

𝟑  Determine a general differential 

equation for the following slope field and 

explain your reasoning.  

 

 

 

 

 

 

 

 

 

 

 
𝑑𝑦

𝑑𝑥
=

𝑎

𝑥2
+ 𝑏 

 

• Hyperbolic function formed by isoclines. 

• Gradient is ∞ at 𝑥 = 0, hence vertical 

asymptote at 𝑥 = 0 

• Power of 𝑥 must be even as gradient of 

positive x-values is positive as well as 

negative x-values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

SIMPLE HARMONIC MOTION 
 
 

Simple Harmonic Motion Rules 

• 𝑨: amplitude of the motion 

• 𝜶 or 𝜷: angles of phase 

• 𝒗: velocity and 𝒙: displacement 
 

 

𝑑2𝑥

𝑑𝑡2
= −𝑘2𝑥 

𝑥 = 𝐴𝑠𝑖𝑛(𝑘𝑡 + 𝛼) 𝑥 = 𝐴𝑐𝑜𝑠(𝑘𝑡 + 𝛽) 

𝑣2 = 𝑘2(𝐴2 − 𝑥2) 
 

𝟏  A particle is moving in 𝒎/𝒔 along the x-

axis in simple harmonic motion. The 

parabola below shows 𝒗𝟐 as a function of 𝒙. 

 

 

 

 

 

 

 

 

Determine the values of 𝒂, 𝒄 and 𝒏 in the 

equation 𝒗𝟐 = 𝒏𝟐(𝒂𝟐 − (𝒙 − 𝒄)𝟐). 
𝑐 = 5 as the particle oscillated about 𝑥 = 5 

𝑎 = 2 as the amplitude is 5 − 3 = 2 or 7 − 5 = 2 
Hence, 11 = 𝑛2(4 − (𝑥 − 5)2) 

As 𝑣2 = 11 when 𝑥 = 5, 11 = 4𝑛2 → 𝑛 =
√11

2
 

 

 

INCREMENTAL FORMULA 
 
 

Incremental Formula (small change) 
 

𝛿𝑦 ≈
𝑑𝑦

𝑑𝑥
×𝛿𝑥 

 

𝟏  A differential equation has a point at 

(𝟓, 𝟔) and⁡
𝒅𝒚

𝒅𝒙
= 𝒙𝒚 − 𝒙𝟐. Determine an 

estimate for 𝒚 when 𝒙 = 𝟓. 𝟐 . 

Using Euler’s method with 𝛿𝑥 = 0.1 
 

𝒙 𝒚 
𝒅𝒚

𝒅𝒙
 𝜹𝒚 ≈

𝒅𝒚

𝒅𝒙
×𝜹𝒙 

5 6 5 0.5 

5.1 6.5 7.14 0.714 

5.2 7.214   

Estimate is 𝑦 = 7.214 
 
 

RELATED RATES 
 
 

𝟏  An inverted cone 𝟖𝒎 tall has an upper 

diameter of 𝟖𝒎 and is filling with water at a 

rate of 𝟐𝒎𝟑/𝒎𝒊𝒏. At what rate is the water 

level rising in the container when the depth 

of water is exactly 𝟑. 𝟓𝒎? 

 

 

 

 

 
 

From the question, substitute 𝑟 =
ℎ

2
 into volume 

∴ 𝑉 =
1

3
𝜋𝑟2ℎ =

1

12
𝜋ℎ3 →

𝑑𝑉

𝑑ℎ
=

1

4
𝜋ℎ2 

 

To find 
𝑑ℎ

𝑑𝑡
 when ℎ = 3.5: 

𝑑ℎ

𝑑𝑡
=

𝑑ℎ

𝑑𝑉
×

𝑑𝑉

𝑑𝑡
=

4

𝜋ℎ2
×2 =

4

𝜋(3.5)2
×2 

=
8

𝜋(3.5)2
=

32

49𝜋
𝑚/𝑚𝑖𝑛 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

𝒗𝟐 

𝒙 3 7 

11 

𝒚 

𝒙 𝜋

2
 

 

VOLUMES OF REVOLUTION 
 
 

Revolution about the x-axis 

• 𝒂 and 𝒃: are bounds on the x-axis 
 

𝑉 = 𝜋 ∫ 𝑦2𝑑𝑥
𝑏

𝑎

 

 

Revolution about the y-axis 

• 𝒂 and 𝒃: are bounds on the y-axis 
 

𝑉 = 𝜋 ∫ 𝑥2𝑑𝑦
𝑏

𝑎

 

 

𝟏  Determine the region bounded by the 

line 𝒙 =
𝝅

𝟐
 and 𝒚 = 𝟑𝒕𝒂𝒏(

𝒙

𝟑
) rotated around 

the x-axis. 

 

 

 

 

 

 

 

 

 

𝑉 = 𝜋 ∫ 𝑦2𝑑𝑥
𝑏

𝑎

= 𝜋 ∫ (3𝑡𝑎𝑛 (
𝑥

3
))

2

𝑑𝑥
𝜋/2

0

 

(3𝑡𝑎𝑛 (
𝑥

3
))

2

= 9 tan2 (
𝑥

3
) = 9 sec2 (

𝑥

3
) + 9 

= 𝜋 ∫ 9 sec2 (
𝑥

3
) − 9𝑑𝑥

𝜋
2

0

 

= 𝜋 [27𝑡𝑎𝑛 (
𝑥

3
) − 9𝑥]

0

𝜋
2
=

−9𝜋

2
+ 9√3𝜋 

 

𝟐  Determine the volume of the region in 

between the functions 𝒙 = 𝒚𝟐 − 𝟔𝒚 + 𝟏𝟎 and 

𝒙 = 𝟓 rotated around the y-axis. 

 

 

 

 

 

 

 

 
 

Determine the points of intersection: 

5 = 𝑦2 − 6𝑦 + 10 → 0 = 𝑦2 − 6𝑦 + 5 

0 = (𝑦 − 5)(𝑦 − 1) → 𝑦 = 1, 5 
Hence, points of intersection are (5,1) and (5,5) 
 

Inner radius⁡= 𝑦2 − 6𝑦 + 10 

Outer radius = 5 

Revolution around y-axis = 𝜋 ∫ 𝑥2𝑑𝑦
𝑏

𝑎
 

 

Hence, this question can be treated as an area 
between two curves question with respect to the 
y-axis. 
 

∴ 𝑥2 = [(𝑜𝑢𝑡𝑒𝑟⁡𝑟𝑎𝑑𝑖𝑢𝑠)2 − (𝑖𝑛𝑛𝑒𝑟⁡𝑟𝑎𝑑𝑖𝑢𝑠)2] 
= [(5)2 − (𝑦2 − 6𝑦 + 10)2] 
= [−75 + 120𝑦 − 56𝑦2 + 12𝑦3 − 𝑦4] 
 
Finding volume: 

𝑉 = 𝜋 ∫ −75 + 120𝑦 − 56𝑦2 + 12𝑦3 − 𝑦4𝑑𝑦
5

1

 

= 𝜋 [−75𝑦 + 60𝑦2 −
56

3
𝑦3 + 3𝑦4 −

1

5
𝑦5]

1

5

 

=
1088

15
𝜋 = 227.87⁡𝑢𝑛𝑖𝑡𝑠2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

RANDOM SAMPLES 
 
 

Population Notation 

• 𝝁: population mean 

• 𝝈: population standard deviation 

• 𝝈𝟐: variance 
 

Sample Notation 

• 𝑿̅: sample mean 

• 𝒏: sample size 

• If 𝑛 ≥ 30, regardless of the prior distribution, 

the sample data will become normally 

distributed with parameters: 

o Mean:⁡𝑋̅  

o Standard Deviation: 
𝜎

√𝑛
 

Z-Score 𝒁~𝑵(𝟎, 𝟏) 
 

𝑍 =
𝑋 − 𝜇

𝜎
 

 

Sample Size 

• 𝒅: value of the difference from the mean. 
 

𝑛 = (
𝑧×𝜎

𝑑
)

2

 

 

 

CONFIDENCE INTERVALS 
 
 

Confidence Intervals 

• 𝒛: z-score for a given confidence interval  
 

𝑋̅ − 𝑧
𝜎

√𝑛
≤ 𝜇 ≤ 𝑋̅ + 𝑧

𝜎

√𝑛
 

 

Common Confidence Intervals (z-scores) 
 

99% CI 2.58 

95% CI 1.96 

90% CI 1.645 
 

• Custom Confidence Interval: ClassPad → 

Main → Action → Distribution → Inverse → 

invNormCDf 
 

𝑧𝑐 = −1×⁡invNormCDf("C", c, 1, 0) 
 

Where 𝑐 is the CI% as a decimal. 
 

 

STATISTICAL INFERENCE EXAMPLES 
 
 

𝟏  Determine a 95% confidence interval of 

a sample of 25 results with mean of 20 

and variance of 4.  

20 − 1.96 (
2

√25
) ≤ 𝜇 ≤ 20 + 1.96 (

2

√25
) 

Hence, the 95% CI is [19.216,20.784] 
 

𝟐  What size sample is needed to ensure 

that sample mean is within 1.5 of the 

population mean with 99% confidence, 

given the standard deviation is 13. 

𝑛 = (
𝑧×𝜎

𝑑
)

2

= (
2.58×13

1.5
)

2

= 499.96 ≈ 500 
 

𝟑  How large of a sample is needed to be 

95% confident that the sample mean is 

within 10 of the population mean, given 

the standard deviation is 15. 

10 = 1.96(
15

√𝑛
) → 𝑛 = 8.6436 ≈ 9 

 

𝟒  45 samples of mean 94 and standard 

deviation 12 was taken. Determine the 

parameters of the normal distribution. 

𝑋~𝑁 (94, (
12

√45
)

2

) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

𝒚 

𝒙 
5 

ℎ = 8𝑚 𝑑 = 8𝑚 

𝑟 = 4𝑚 

 

R=4m 


